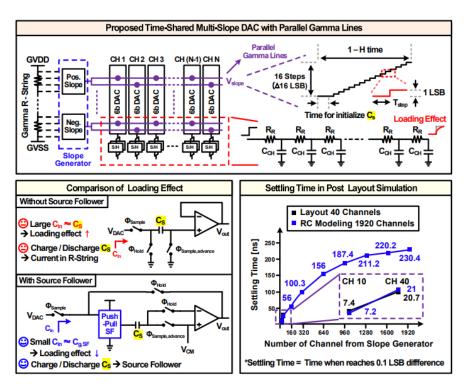

2023 IEEE ASSCC Review

KAIST 전기및전자공학부 박사과정 임규완

Session 7 Emerging Sensors and Displays

"Emerging Sensors and Displays" 라는 주제로 만들어진 이번 ASSCC의 7번 session에서는 총 4편의 논문이 reflectometer, display driver, touch sensor, multiple access sensor node 등의 다양한 주제로 발표되었다. 이번 review에서는 이 중 특별히 display driver과 touch sensor에 대한 논문을 살펴보겠다. Display driver은 2010년대 중반까지 활발히 연구되다가 잠시 주요 학회에 논문이 제출되지 않았으나, 최근 몇 년간 ISSCC 및 VLSI 등 학회에 다시 활발히 논문이 제출되는 분야로써, 특히 VR 및 AR과 관련된 display 회로 분야가최근 관심을 받고 있다. Touch sensor은 주요 학회에 논문이 많이 제출되는 분야는 아니지만, 꾸준히 논문이 제출되고 있으며, 특히 최근 ISSCC 23년도에도 touch sensor 논문이출간된 바가 있다.

7-2


[그림 1] 논문에서 제안하는 time-shared display driver IC 구조

7-1번 논문은 기존의 conventional display driver의 가장 큰 단점인 color depth의 증가에 따른 driver size의 exponential한 증가를 막고, piecewise linear interpolation의 단점인

effective bit 감소 또한 막고자 제시된 구조이다. 제안하는 구조는, 기존의 interpolation과 유사한 방식으로 채널 내에 존재하는 R-DAC, 즉 switch array의 resolution을 줄여 column channel circuit의 size를 크게 감소시키고, R-DAC의 resolution 감소로 인해 사라진 resolution은 interpolation 대신 gamma voltage slope를 이용한 sample & hold 방식으로 생성하여 10-bit voltage를 만들어 낸다.

Gamma voltage slope를 이용한 sample & hold 방식은 다음과 같이 동작한다. 먼저, 10-bit reference gamma 전압을 16개의 전압을 가지는 64개 (6-bit)의 구간으로 나눈 후, 1-H time 동안 각 구간의 16개 전압이 한단계 (=1LSB)씩 올라가면서 출력되는 64개의 voltage slope을 만들어 낸다. 그 후, 각 채널은 MSB 코드를 이용해서 64개의 voltage slope 중 하나를 선택하고, LSB 코드를 이용하여 slope의 전압 중 입력 code에 해당하는 전압을 sample한다. 마지막으로, sample 된 전압은 다음 1-H time에 amp 및 buffer에 연결되어 driving 된다.

위의 동작은 하나의 sampling cap만 이용한다면 sample 하는데 1-H time, driving 하는데 1-H time이 필요하여 총 2개의 1-H time이 필요한데, 제안하는 work에서는 2개의 sampling cap을 사용하여 다른 하나의 cap이 출력을 driving 할 때 나머지 cap이 전압을 sampling 하도록 하여 1-H time동안 입력 data에 대한 전압을 driving 할 수 있도록 하였다.

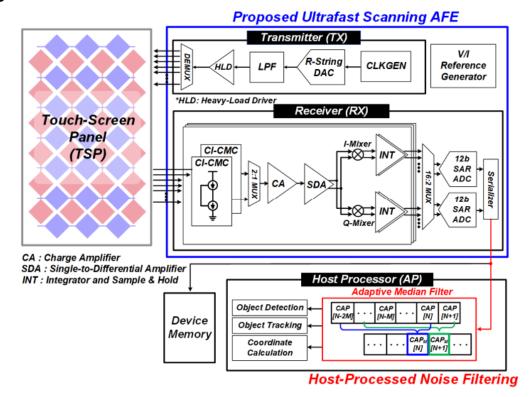
[그림 2] 논문에서 제안한 cap loading effect 감소 구조

하지만, 이러한 형태의 회로에서는 한 가지 문제가 있다. 제안하는 구조는 global reference의 출력 전압을 sampling하는 구조이고, global reference의 R-string 저항 및 routing line의 저항이 sampling cap을 driving 해야 한다. 게다가 display driver은 multichannel 구조이기 때문에, 여러 채널의 sampling cap이 하나의 큰 capacitor로 보이므로 이는 R-string 저항 및 routing 저항과 함께 큰 time-constant를 만들어 각 capacitor의 전압이 settling 하는데 긴 시간이 걸리게 할 수 있다.

따라서, 제안하는 work에서는 그림 2와 같이 각 capacitor의 앞에 source follower을 삽입하여 R-string 및 routing 저항에서 보이는 effective capacitor을 작게 줄여 capacitor의 전압이 settling 하는 데 걸리는 시간을 voltage slope의 하나의 전압이 올라가는 데 걸리는 시간보다 짧게 줄였다.

제안하는 work은 이전 work에 비해 fully nonlinear한 전압을 driving 할 수 있다는 장점이 있고, interpolation을 사용하지 않고도 6+4 interpolation과 비슷한 효과를 내어 channel의 size를 줄였다는 장점이 있다. [표 1]에서 제안하는 work의 장점과 size shrinkage를 볼 수 있다.

	JSSC 2009 [1]	JSSC 2021 [4]	VLSI 2021 [5]	ISSCC 2022 [6]	This work
Technology	100 nm	90 nm	180 nm	130 nm	180 nm
Color Depth (Nonlinear Bit + Interpolation Bit)	Piecewise Linear 10-bit (6 + 4)	Fully Nonlinear 10-bit (10 + 0)	Piecewise Linear 12-bit (7 + 5)	Piecewise Linear 10-bit (8 + 2)	Fully Nonlinear 10-bit (10 + 0)
Output Range	0V to 5V	0.2 V to 4.8 V	0.1 V to 4.9 V	0.3 V to 4.5 V	0.2 V to 4.8 V
INL / DNL [LSB]	1.71 / 0.37	0.42 / 0.2	0.95 / 0.43	0.9 / 0.39	0.89 / 0.46
Max. DVO	6.4 mV	7.9 mV	7.9 mV	4.82 mV	7.47 mV
Static Current per Ch.	1.2 µA	2.8 μΑ	2 μΑ	1.8 µA	1.4 μA**
Silicon Area per Ch.	6622 μm² (473 x 14)	5328 µm² (296 x 18)	5015 µm² (295 x 17)	2688 µm² (168 x 16)	6444 µm² (358 x 18)
Area Shrinkage*	8.2 %	31.0 %	N/A	65.2%	44 %
Nonlinear Gamma Voltage Driving	х	0	х	х	0
Interpolation Method	Current DAC	Capacitor DAC	Capacitor DAC	Capacitor DAC	Time-Shared Gamma Slope Sampling
Adaptive Biasing	X	X	0	X	0

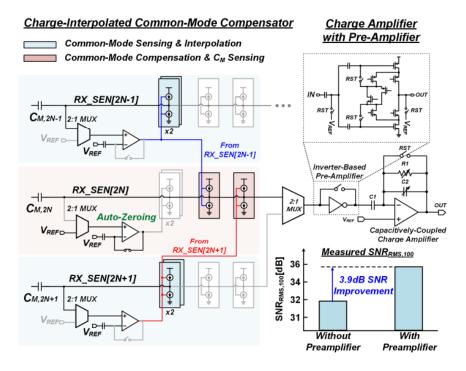

^{*} Compared to conventional 8b RDAC. Layout was individually done by each reference **Averaged

[표 1] 성능 비교표

마지막으로, 제안하는 work의 단점을 몇 가지 살펴보자면, sampling 방식이 사용됨에도 불구하고 main amplifier의 offset이 sample 될 수 없다는 점과, main amplifier의 offset이 main amp의 input capacitor과 sampling capacitor의 비율로 증폭이 된다는 단점이 있다. 이에 관하여 한 가지 이상한 점은, fig. 4에는 main amplifier의 offset을 sample하여 이를 cancel하는 것처럼 설명되어 있다는 점인데, 제안하는 DAC의 동작 상 main amplifier은 sampling 과정에 참여할 수 없으므로 main amp의 offset은 cancel될 수 없다.

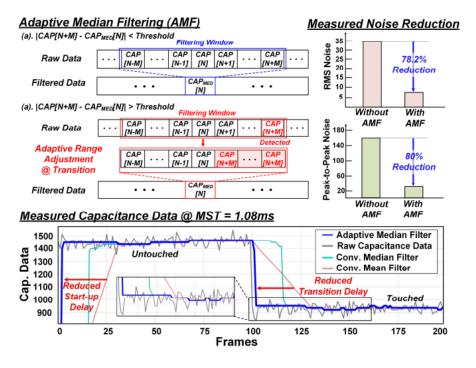
또한, 1-H time 동안 16단계의 전압이 각 capacitor의 전압에 settling 되면서 올라가야 하므로 1-H time이 더 짧아지는 application에서는 더 많은 전류를 소모하거나, 전압 단계를 줄여서 speed를 올리고 driver size를 증가시켜야 할 수 있다는 단점이 있다.

7-3



[그림 3] 제안하는 touch sensor 구조

7-3번 논문은, 빠른 refresh rate을 요구하는 touch sensor에서 쓰일 수 있는 구조를 제안하였다. 제안하는 touch sensor은 이전에 사용되었던 analog domain의 noise filtering 등의 기법을 사용하는 대신, adaptive median filter을 사용하여 post-processing으로 noise 를 filtering하고, 이로 인해 시간을 소모하는 analog noise filtering 없이 빠른 속도로 출력을 얻어내면서 높은 SNR을 얻을 수 있다. 또한, 빠른 동작을 위해 driving signal frequency를 500kHz로 높이면서 높은 driving frequency로 인한 Rx phase error을 제거하기 위해 I/Q modulation을 사용하였다. 마지막으로, charge-interpolated common-mode compensator (CI-CMC)를 사용하여 differential sensing 보다 더 효과적으로 common noise를 제거한다.


[그림 4]는 논문에서 제안하는 CI-CMC를 설명한다. 이는 이전의 differential sensing과

다르게, sensing하는 channel의 noise를 옆에 있는 channel에서 빼 주는 것이 아니라, 양 옆의 channel에서 가져와서 이를 averaging 하여 빼 주는 형태를 취한다. 다만, 이러한 방식의 common noise 제거는 differential 방식과 크게 다르다고 할 수 없고, 바로 옆 채널 대신 양 옆 채널의 common noise를 가져와 빼는 점만 다르다.

[그림 4] 제안하는 CI-CMC

[그림 5]는 제안하는 adaptive median filter (AMF)를 보여준다. 이는 이전의 mean filter 및 median filter와 비슷하게 moving average filter 형태를 취하지만, data에 큰 transition 이 일어날 때 transition 구간을 감지하여 mean을 취할 구간을 빠르게 다시 설정해 출력 data의 변화가 빠르게 일어나도록 하는 것이 장점이다.

[그림 5] 제안하는 AMF

저자정보

명예기자 임규완

● 소 속: KAIST 전기및전자공학과 박사과정

● 연구분야: Display Driver IC, Readout IC

● 이 메 일 : limkw@kaist.ac.kr

● 홈페이지: https://ICdesignlab.net